Importance of melanocortin signaling in refeeding-induced neuronal activation and satiety.
نویسندگان
چکیده
To identify regions in the hypothalamus involved in refeeding and their regulation by alpha-MSH, adult rats were subjected to a 3-d fast, and 2 h after refeeding, the distribution of c-Fos-immunoreactive neurons was elucidated. Compared with fed and fasted animals, a significant increase (P < 0.001) in the number of c-Fos-immunoreactive cells was identified in refed animals in the supraoptic nucleus, magnocellular and ventral parvocellular subdivisions of the hypothalamic paraventricular nucleus (PVNv), and the dorsal and ventral subdivisions of the dorsomedial nucleus (DMNd and DMNv, respectively). Refeeding shifted the location of c-Fos-labeled neurons from the medial to lateral arcuate where c-Fos was induced in 88.7 +/- 2.2% of alpha-MSH-containing neurons. alpha-MSH-containing axons densely innervated the PVNv, DMNd, and DMNv and organized in close apposition to the majority of refeeding-activated c-Fos-positive neurons. To test whether the melanocortin system is involved in induction of c-Fos in these regions, the melanocortin 3/4 receptor antagonist, agouti-related protein (AGRP 83-132), was administered to fasting animals just before refeeding. Compared with artificial cerebrospinal fluid, a single intracerebroventricular bolus of agouti-related protein (5 microg/5 microl) not only significantly increased the total amount of food consumed within 2 h but also nearly abolished refeeding-induced c-Fos expression in the PVNv and DMNd and partially reduced c-Fos immunoreactivity in the DMNv. We conclude that refeeding activates a subset of neurons in the PVN and DMN as a result of increased melanocortin signaling and propose that one or more of these neuronal populations mediate the potent anorexic actions of alpha-MSH.
منابع مشابه
Peptide YY3-36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism.
Peptide YY(3-36) (PYY(3-36)), a peptide released postprandially by the gut, has been demonstrated to inhibit food intake. Little is known about the mechanism by which PYY(3-36) inhibits food intake, although the peptide has been shown to increase hypothalamic proopiomelanocortin (POMC) mRNA in vivo and to activate POMC neurons in an electrophysiological slice preparation. Understanding the phys...
متن کاملProteins activate satiety-related neuronal pathways in the brainstem and hypothalamus of rats.
Our objective was to study the relationship between the satiety induced by high-protein meals and the activation of brain areas involved in the onset of satiety. In rats, we used immunohistochemistry to monitor brain centers activated by a meal by receiving information from the gastrointestinal tract or via humoral pathways. In the nucleus of the solitary tract (NTS), the acute or chronic intak...
متن کاملElucidation of the anatomy of a satiety network: Focus on connectivity of the parabrachial nucleus in the adult rat.
We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial, and par...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 2007